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ABSTRACT: Skin tissue wound healing proceeds through four major stages, including e Loo  ecelcoocic
hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue e » =

a el

remodeling. These four steps significantly overlap with each other and are aided by = = -
various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth e m“‘
factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials \«/
provide several functional advantages, such as removing wound exudates, providing cover, B G -
transporting oxygen to the wound site, and preventing infection from microbes. In AT s Py
addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/ e e
growth factors and/or antimicrobial agents to the target wound site. In this review, we
report recent advancements in biomaterials-based regenerative strategies that augment
the skin tissue wound healing process. In conjunction with other medical sciences,
designing nanoengineered biomaterials is gaining significant attention for providing
numerous functionalities to trigger wound repair. In this regard, we highlight the advent
of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also
emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management.
Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective
future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth
factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound
healing with no scar tissue formation.

KEYWORDS: skin tissue, wound healing, advanced biomaterials, nanomaterials, 3D bioprinting

1. INTRODUCTION found in the skin tissue. This is further evidenced by the fact

Skin comprises approximately one-sixth of the body mass with that currently no full replacements exist that accurately mimic

a primary role of protecting the inner organs from the external these mentioned complex features of the native tissue.

environment." To remediate diseased or damaged tissue, skin However, by combining various salient features, such as
tissue undergoes a remodeling process that begins with advanced biomaterials science, cells, biochemical cues
hematoma formation, followed by initiation of successive (proteins/growth factors (GFs)),* developmental biology,
steps resulting in neo-skin regeneration. This intricate process and from tissue engineering, biomaterials scientists hope to
is hampered in certain circumstances, such as burns, trauma, or recreate a scaffold that would eventually pave a way resulting in
through disease (diabetes, neuropathies, lymphedema, derma- neo-tissue formation.” As the skin tissue is complex,
titis, and obesity), requiring surgery to facilitate tissue application of tissue engineering is justified where advanced

regeneration.” Surgical intervention, which is the preferred
technique to heal wounds in such cases, is accomplished by
anatomically localizing the wound borders, thereby closing the
wound, minimizing infection or contamination from the
external environment.” However, surgery is considered in
wounds that are not large-surface or deep. Owing to these
drawbacks, regenerating skin tissue utilizing the concepts of Received: January 14, 2022
tissue engineering is attractive, as it can address several Accepted:  April 7, 2022
drawbacks found in traditional approaches in wound healing. Published: April 22, 2022
Traditional tissue engineering techniques, although a
promising option, are hard to accomplish because of variations
(morphological, biological, biochemical, and mechanical)

scaffolds have been shown to deliver appropriate biochemical
cues with higher temporal and spatial precision. This review
provides an outline regarding various advanced biomaterials
with distinct morphologies and chemical and physical
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characteristics, which are being used/studied in various aspects
of wound healing/regeneration.

To date, most of the available reviews focus on materials and
structures™"' or advanced technologies'>™"® which are
involved in the fabrication of biomaterials for wound healing.
As an advancement to those, this review intends to describe
the biomaterials-based regenerative strategies utilized in wound
healing applications. The present review discusses the
significance of the latest polymer-based approaches for skin
regeneration, in comparison with other cell-based therapies.
With the prime focus on hydrogels, different fabrication
strategies, namely preformed and in situ synthesis, are explored.
Considering the promising potential of nanoengineered
biomaterials, this review discusses various wound dressings
containing nanomaterials, viz. liposomes, inorganic nano-
particles, lipid nanoparticles, etc., especially in clinical settings.
In addition, 3D bioprinting, an extension of rapid prototyping
technology, as a prominent and potential solution to address
problems related to advanced wound healing, is also described.
Further, the challenges related to skin regeneration using
wound dressings at preclinical/clinical stages are discussed.

2. SKIN TISSUE-ANATOMY, PHYSIOLOGY, AND
HEALING

The skin tissue is generally considered to be composed of three
different layers: epidermis, dermis, and hypodermis, being the
outermost, inner, and innermost regions of the skin tissue,
respectively, with each region providing a unique role in the
functioning of the tissue (Figure 1). The epidermis, which sits
at the outermost region of the skin tissue, consists of a thin
(thickness <1.5 mm), biologically active region (but
predominantly acellular). This region serves as a barrier to
the external environmental forces such as toxins, infections,
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Figure 1. Schematic illustrating the distinct regions of the skin tissue.
Three distinct regions (epidermis, dermis, and hypodermis) present
in the skin tissue are seen, with some hair follicles protruding out of
the epidermis. Also seen in this layer are the keratinocytes at all stages
of differentiation arising out of the basal stem cell niche, with some
minor melanocytes also arising out of the stem cell niche. Beneath the
epidermal layer, the dermis layer is found which hosts sebaceous and
sweat glands, hair follicles, extracellular matrix (collagen, proteogly-
cans, and other ECM proteins), fibroblasts (which secrete the ECM
matrix), and some minor blood vessels for nutrient transport. The
innermost layer is the hypodermis, which has a substantially higher
proportion of highly vascularized adipose tissue that provides
thermoregulation. Reproduced with permission from ref 28. Copy-
right 2015 Elsevier.
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ultraviolet (UV) radiation, and other endotoxins. In addition
to acting as a barrier, the epidermis also aids in various
physiological processes such as hormone generation.

The middle layer that sits immediately beneath the
epidermis consists of the dermis, a dense connective tissue
which holds various enzymes, stem cell niches, blood vessels,
nerves, adipose tissue, muscle fibers, and various glands and
hair follicles. The innermost layer beneath the dermis is the
hypodermis layer that is essentially vascularized adipose tissue.
It provides mechanical strength and thermoregulatory proper-
ties to the tissue.

Besides their role in the functioning of the skin tissue, all
three layers differ significantly in terms of cellularity, cell
phenotypes, biochemical composition, and mechanical proper-
ties. For instance, the epidermis, the thinner outermost layer,
predominantly consists of fully differentiated keratinocytes
(~95%), with the remainder being melanocytes, Langerhans
cells, and Merkel cells. As the epidermis is present in the
outermost layer, they are subjected to various external factors,
and frequent regeneration and remodeling of the cell
phenotypes takes place by movement or differentiation and
maturation of keratinocytes into the epidermal layer. Within
the epidermis layer, based on the cellular activity and type, it
can be classified into the stratified basale (SB), stratum
spinosum (SS), stratum granulosum (SG), and stratum
corneum (SC). As the proximal layer to the dermis region, it
plays a key role in the efficient transfer of nutrients to the
differentiating cells in the nearby layers. This region is
predominantly composed of type-IV collagen, extracellular
matrix (ECM) proteins (fibronectin and laminin), and heparin
sulfate ECM proteoglycan that binds and holds charged GFs.
For further information regarding various morphological and
biological properties of these layers, readers are referred to an
excellent review by Menon et al.'®

Unlike the epidermis, the dermis layer has various resident
biological components (vessels, nerves, fat tissue, etc.) and,
thus, a wide array of both biochemical components (ECM
proteins and glycoproteins and glycosaminoglycans) and cell
types (fibroblasts, adipocytes, myocytes, endothelial cells, and
stem cells).

Finally, the third layer, the hypodermis, is composed mostly
of adipose tissue that provides mechanical integrity and
thermoregulatory properties. It also aids in separating the
skin tissue from the underlying muscle. This layer is essentially
made of elastin fibers with a minor presence of large collagen
fibers.

As a metabolically active tissue, skin tissue undergoes
frequent remodeling predominantly due to the cell sloughing
in the epidermal layer. However, disruption to the remodeling
process prevents spontaneous healing, leading to scar tissue
formation. Wound healing typically proceeds with four major
steps with significant overlap between the steps, involving
hematoma formation, inflammation, neo-tissue formation, and
finally tissue remodeling, with the final step resulting in scar
tissue formation.'” The timeline of various steps involved in
tissue regeneration is shown in Figure 2, and various factors
that have been known to influence the process are shown in
Figure 3 and summarized in Table 1.

Upon injury, a fibrin clot is formed by the activation of
thrombin by prothrombin activators and secretion of platelet-
derived growth factor (PDGF) and transformation growth
factor-f (TGE-f5). Subsequently, secreted growth factors
(GFs), such as tumor necrosis factor-alpha (TNF-a),
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Figure 2. Various stages and factors involved in the tissue
regeneration/healing. Once the tissue is wounded, a fibrin clot
aided by thrombin occurs with simultaneous release of platelets
attracting macrophages and neutrophils. Once this inflammation
occurs, fibroblasts secrete a new ECM matrix aided by FGFs, with
simultaneous formation of an epithelial layer (aided by EGFs) and
vasculogenesis (aided by vascular endothelial growth factor
((VEGF)), all originating from the MSCs. In the final stage, a further
ECM matrix is created with some collagen cleaving taking place by
MMPs and TNF-q, secreted by keratinocytes. Finally, over a period of
time, neo-tissues formed undergo cross-linking to improve the
mechanical properties and texture of the skin.
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Figure 3. Schematic illustrating the role of various cells and
biochemical factors at different stages in the wound healing process.
A major role played by TGF-§ originating from macrophages is seen
at all stages of wound healing (activation of EGF, fibroblasts to
generate ECM and FGF, etc.). Also seen is their capability to
downregulate these cells and GFs once satisfactory performance is
achieved, indicating prominence of TGF-# in wound healing. In
addition, production of VEGF, PDGF, and EGF from their respective
sources is also seen. Finally, the role played by various proteases in
causing the downregulation of various expressions (PDGF) and
remodeling of the ECM matrix is seen. Reproduced with permission
from ref28. Copyright 2015 Elsevier.

interleukin-1 (IL-1), and other pro-inflammatory cytokines
from cells such as macrophages and neutrophils, migrate to the
wound site to remove the wound debris and bacterial
contamination. Alongside macrophages, defense mechanisms
are hosted to eliminate infectious agents by chemotactic agents
such as C5a, C6, and C7, which promote subsequent migration
of neutrophils."® Upon this inflammation step, TGF-f provides
further signaling pathways resulting in subsequent release of a
cascade of signaling cytokines, such as fibroblast-like growth

2071

factors (FGF-$), which promotes the chemotaxis of fibroblasts
in secreting a neo-ECM for promoting new tissue formation.

As the inflammation phase concludes, coinciding with the
start of the ECM secretion phase, a sequence of events is
observed. TGF-# downregulates the signaling of macrophages
and neutrophils, while simultaneously upregulating cytokines
such as epidermal growth factors (EGFs) and FGF, promoting
the ECM synthesis consisting of collagen, proteoglycans, and
other ECM proteins. To accomplish this, TGF-f also
downregulates the production of proteinases such as
collagenase. Out of 20+ known FGF isoforms, several FGFs
such as FGF-1, 2, 4, 7, 10, and 22 have been implicated in
various aspects of wound healin% immediately prior to and
after the inflammation phase.'”™"" It is not surprising that
FGFs have been implicated in wound healing, as they have
shown capability to act as mitogens with strong vascularization
potential for fibroblasts and keratinocytes.'”**~** In particular,
FGF-2 has been shown to aid in the proliferation of fibroblasts
by activating extracellular signal-regulated kinase (ERK) and
protein kinase B (PKB or Akt) phosphorylation.” In addition,
FGF-2 has also been observed in the wound surface, dermis
layer, and regenerated epidermis, indicating the necessity for
the FGF-2 to simulate wound healing.26 Likewise, FGF-7 (also
known as keratinocyte growth factor-1) has been known to
exist in the regenerated epidermal layers of the mice, pigs, and
human wounds.”® Although some mice models have been
shown to regenerate the epidermal layer in the absence of
FGF-7, the underlying mechanism was attributed to the
presence of FGF-10 (also known as keratinocyte _%rowth factor-
2) to compensate for the absence of FGF-7.”%

Besides FGFs, EGFs, which are polypeptides composed of
SS amino acids (molecular weight = 6500 Da) are also active
during the proliferation phase of the wound healing process.
These EGFs, originating from the platelets or existing
keratinocytes from the debris or macrophages, have been
shown to simulate the proliferation of keratinocytes but not
melanocytes,”” while simultaneously providing vascularity and
re-epithelialization.””’’ The EGF family comprises four
proteins, namely EGF, TGF-alpha (TGF-a), heparin binding
EGF (HB-EGF), and amphiregulin, with several mitogens such
as epiregulin, betaregulin, and neuregulin.26’32’33 The pro-
liferating cells (keratinocytes, endothelial cells, and fibroblasts)
have receptors in their cell membranes that aid in their binding
to the EGFs, initiating a series of events that proceeds through
the MAPK/ERK pathway, leading to mitogenesis.”*

The effect of EGF on wound healing was first reported by
Cohen and co-workers, who studied the epithelialization in a
mice model.>> Subsequent studies on the rat epidermis and
rabbit epithelium showed binding of EGF to the injury site,
thereby providing initial evidence for the role of EGFs in
wound healing.*® Although these studies showed the presence
of EGFs and their binding capability, studies by Brown et al.
and Nanney et al. showed epidermal regeneration in pigs, rats,
and humans.”’ ™ Furthermore, subsequent studies by Falanga
et al. showed faster epithelialization and, thus, quicker healing,
when EGFs were exogenously applied topically to the wound
surface.”

However, in diabetics, topical application of EGFs remains
contentious, havin% been reported to have both increased”' as
well as decreased™ levels in skin regeneration, although one
study showed application of a high concentration could be a
better approach to treat venous ulcer.*’ Likewise, subsequent
experiments in diabetic and nondiabetic rats showed delivery
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of EGFs through a wound closure device resulted in wound
closure and hydroxyproline content (statistical significance was
observed in normal rats).** Within the large group of EGFs,
TGF-a and HB-EGF have further been shown to possess
autocrine mechanisms to mutually amplify, provided one of the
two EGFs are available at the injury site.”""**

A more recent study illustrated the significance of HB-EGF
in a HB-EGF knockout mice model, reporting accelerated
migration of keratinocytes resulting in rapid re-epithelializa-
tion, demonstrating the significance of HB-EGF in tissue
regeneration.”” Besides aiding in the migration of proliferating
cells and re-epithelialization, by simulating production of
endothelial nitric oxide synthase (eNOS), HB-EGFs also
promoted angiogenesis,”’ although some studies refute the
production of reactive nitric oxide, indicating diminishing
macrophage functionality with the presence of EGFs.**

As new ECM is being secreted by the fibroblasts aided by
FGFs, with simultaneous epithelialization being carried out by
keratinocytes aided by EGFs, due to the higher metabolic
activity coupled with the hypoxic environment in the wound
area, hypoxia-inducible factor expression is simulated.'”** By
binding to specific DNA sequences, HIF promotes VEGF
expression aided by angioprotein-1 (Ang-1), thereby promot-
ing vascularization.”” In fact, a recent study demonstrated an
increase in Ang-1 protein with simultaneous increases of HIF-
2a expression in bovine retinal pericytes (BRPs), illustrating
synergy between the two expressions in simulating vasculariza-
tion.”" As vascularization proceeds with simultaneous com-
pletion of ECM production by fibroblasts, fibroblasts undergo
differentiation into myofibroblasts.>”

The final stage of the wound healing process is the
remodeling of the formed neo-tissue. During this stage, several
synchronized processes, such as apoptosis of the fibroblasts,
endothelial cells, and macrophages and decreased synthesis of
new blood vessels by downregulation of VEGF expression, take
place. In addition, synthesis of a new ECM matrix consistinSg of
collagen-type III in the extracellular space takes place.””>’
Simultaneously, the conformation of collagen undergoes
transformation into a triple-helix structure. Further trans-
formation takes place by the cleavage of the collagen ends by
matrix metalloproteinases (MMPs) secreted by fibroblasts and
endothelial cells undergoing apoptosis, thereby achieving tissue
homeostasis.””** The neo-tissue thus formed undergoes
continuous remodeling via cross-linking to achieve texture
and mechanical properties closely resembling native tissue.'”

Besides the mentioned GFs, several small and large signaling
molecules such as retinoic acid (vitamin-A), ascorbic acid
(vitamin-C), vitamin-E, vitamin-K, hepatocyte growth factor,
homeobox genes (HOX), hormones such as acetylcholine, and
polyunsaturated fatty acids and their derivatives have also been
observed. Moreover, they have been studied to have an effect
in wound healing processes involving promotion of epithelial
cell differentiation, collagen synthesis, immune function,
biological membranes, and angiogenesis.lg’ss_60 Likewise, the
presence of zinc (Zn), copper (Cu), oxygen (0), and iron
(Fe) has also been indicated in wound healing, which includes
collagen synthesis and remodeling, re-epithelialization, angio-
genesis, enzyme synthesis, and bactericidal function.’ =
Despite our deep understanding of these well-known factors,
successful regeneration of completely functional tissue without
scar tissue formation remains elusive.

Some of the major causes include short lifetime, proteolytic
degradation, toxicity, and unsystematic presentation with high

Abbreviations: IL-1, interleukin-1; IL-6, interleukin-6; TNF-q, tumor necrosis factor-alpha; G-CSF, granulocyte colony-stimulating factor; TGF-f, transformation growth factor-beta; PDGF, platelet-

derived growth factor; EGF, epidermal growth factor; FGF, fibroblast-like growth factors; HGF, hepatocyte-growth factor; VEGF, vascular endothelial growth factor; ECM, extracellular matrix; MMPs,

Table 1. continued
matrix metalloproteinases.

a
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temporo-spatial g)recision of most growth factors found in
wound healing.””~”* In addition, incomplete healing of the
tissue resulting in scar tissue formation has also hampered
efforts to incorporate GFs, in particular TGF-f1 and TGF-f2
and to an extent VEGF, for wound healing.74_77 Besides,
minerals such as Fe have been shown to upregulate the
macrophage population especially at the later stage of the
healing process, further impairing the healing process.”®
Several ways have been reported to improve the short-half-
life time and toxicity. These include controlled release of the
GFs by binding to a heparin coacervate as shown by Johnson
et al”” or by immobilizing to a highly permeable, low
molecular weight protamine as shown by Choi et al.*’

Another promising way to overcome the drawbacks
associated with GFs is to utilize short interference RNA
(siRNA)- or microRNA (miRNA)-based technologies for skin
regeneration. siRNAs, in particular, have been extensively
studied for biological applications ranging from wound healing
and nerve regeneration to cancer therapies and genetic
disorders®' ~** by regulating the cellular events taking place
in the development or pathogenesis.”* In siRNA, small strands
of RNA are loaded with RNA-inducing silencing complex
(RISC), commonly found in mammalian cells, which then
targets the mRNA through base pairing cleaving the mRNA.*
By conserving the guide strand and RISC, a catalytic process is
derived with higher capability to block more specific growth
factors than the commonly employed antibody approach.

Typically, every day thousands of people encounter one or
another type of skin damage, which require special medical
attention. Improper wound healing might worsen the
condition and lead to chronic wounds, thereby developing
the infection at the wound site and deteriorating the patient’s
health.'*° Many such wounds, such as burns or venous ulcers,
lead to substantial social and economic burdens on the patient
and medical management of the nation.""" To strengthen the
wound healing process, modern therapeutics acknowledge
different biomaterials and revolutionary technologies, as
discussed in the upcoming sections. These therapies should
be able to address the associated complications, including pain,
infection, inflammation, excess exudates, and delayed healing.
Moreover, the accompanying cost should be taken into
consideration.

3. BIOMATERIAL-BASED APPROACHES FOR WOUND
THERAPY

Biomaterials are non-viable or non-drug materials used in
medical intervention and are expected to interact with the
biological systems. These materials are extensively used in
health care as they can improve the quality of an individual’s
life by replacing or augmenting any tissue, organ, or bodily
function for an extended period of time."'”'"* Depending on
the wound type, acute or chronic, several biomaterials have
been developed in different forms to manage and treat the
wounds effectively.

An optimal biomaterial for wound healing should meet
various requirements such as biodegradability at an ideal rate,
non-toxicity, and non-immunogenicity, tissue biocompatibility,
optimal mechanical properties, and adequate morphology. The
porosity exchange of cells, gases, nutrients, and metabolites
within the biomaterials and between the biomaterial and local
environments is a crucial factor to strengthen wound
healing.''* By tuning the physical properties of functionalized
biomaterials, wound healing dressings provide satisfactory anti-
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inflammatory, antibacterial, and adhesive properties. Besides,
biomaterials can also be used to deliver functional molecules
including therapeutics to the targeted wound site.''> In the
recent few years, there has been an upsurge in the number of
patients suffering from chronic wounds, burns, and ulcers
which are difficult to heal and treat using conventional medical
technologies. Advancement in the field of biomaterials has
been continuously addressing the challenges encountered to
treat complicated wounds.''® In this view, good biodegrad-
ability and biocompatibility, low toxicity, polymeric biomate-
rials are gaining overwhelming importance in wound and burn
management.' " The polymeric biomaterials used for wound
healing can further be classified into natural and synthetic
polymers and are discussed in the following sections.

3.1. Natural Polymers. These are naturally occurring
polymers of either carbohydrates or proteinaceous materials:
polysaccharides and proteins. Due to their biodegradability,
biocompatibility, and hydrophilicity, they have been exten-
sively tested for tissue engineering in the form of powders,
solid sheets/sponges, and liquids.''* Some of the natural
polymers used for wound healing are discussed briefly in the
following section.

3.1.1. Collagen. Collagen is the most abundant protein
present in humans and animals and the main component of
ECM. Among various types of collagen, type I comprises 70—
80% of the dermis, whereas types II and III form the main
components of cartilage and blood vessels.''” It essentially
provides mechanical strength to tissues, stimulates cell
adhesion and proliferation, and also supports granular tissue
formation. The presence of target motifs for integrin receptors
of cells in collagen makes it an ideal substrate for regulating
various properties related to migration, adhesion, proliferation,
and differentiation. The collagen used for biomedical
applications is primarily derived from bovine or equine
sources, either from Achilles tendons or skin.''*''®

Collagen is also used in various formulations required for
wound dressings for blood clotting.119 For instance, collagen
powder has been utilized to develop a product “Colgel”
(Laboratorielnterphar, Aubervilliers, France) which is very
effective for patients associated with high risk of blood loss
during cardiac operations.120 Furthermore, collagen has also
been used as biocomposites with other polymers, in the forms
of injectable hydrogels, membranes, and films."”" Collagen-
based scaffolds are also known to enhance the penetration of
antimicrobial agents and cellular biocompatibility.'**

Recently, collagen-based self-healing hydrogels have been
fabricated with improved thermal stability and injectability.'**
The as-synthesized hydrogel exhibits enhanced in vivo mouse
skin regeneration, with a superior healing ratio of 92.4%, as
compared to traditional collagen hydrogel (75.2%), repairing
wounds effectively with better tissue regeneration ability.
However, the processing parameters resulted in shorter
degradation times and poor mechanical properties of collagen,
hindering the applicability of this protein as wound dressings.
To overcome this, collagen scaffolds have been associated/
combined with other polymers, namely poly(e-caprolactone)
(PCL), to enhance their overall tensile strength. Further, the
mechanical strength has been enhanced with the utilization of
cross-linking methods such as chitosan blending, UV polymer-
ization, enzymatic treatment, and glutaraldehyde cross-linking
which induce various covalent and ionic bonds.'**

The diabetic wounds in Sprague—Dawley rats were
evaluated by collagen and poly-p,L-lactide-glycolide (PLGA)

https://doi.org/10.1021/acsabm.2c00035
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scaffolds encapsulating glucophage (an antidiabetic drug). The
application of a collagen/PLGA scaffold with glucophage
resulted in enhanced collagen content and more rapid re-
epithelialization of the skin than that obtained using a
collagen/PLGA scaffold only. The higher collagen content in
rats using drug-eluting membranes was supported by the
inhibition of matrix metalloproteinase 9 (MMP-9) expression
by glucophage, thus protecting collagen from degradation.'*’

3.1.2. Gelatin. Gelatin, a derivative of collagen, is derived
from physical, chemical, or enzymatic hydrolysis of type I
collagen and is highly used for wound healing applications.
One way this is accomplished is by electrospinning into
nanofibrous forms (predominant structures of ECMs) from
solutions of trifluoroethanol (TFE), hexafluoroisopropanol
(HFIP), and formic and acetic acid and subsequently cross-
linking into the insoluble form."'>'**'*” Gelatin contributes to
enhanced formation of granular tissue by attracting MMPs 2
and 9, at significantly higher quantities than native collagen.
Gelatin fibers encapsulating silver nanoparticles (AgNPs) have
been used to treat infected wounds.''®"**"*” In addition to
being an ideal substrate for wound healing, gelatin-based
scaffolds containing AgNPs also show exceptional antibacterial
activity against bacterial strains such as S. aureus, P. aeruginosa,
methicillin-resistant S. aureus (MRSA), and E. coli.

Recently, a hemostatic bilayer scaffold composed of GF-
loaded gelatin metacryloyl modified with a silicate nano-
platelets/laponite (GelMA/LA) nanocomposite hydrogel and
gelatin nanofibrous matrix was developed to stimulate
complete skin regeneration for full-thickness wound healing.'*
The GelMA/LA (GLS) hydrogel was used as the top layer to
represent the epidermis layer, and gelatin nanofibrous matrix
(GFS) was employed as the first matrix layer to form the
dermis layer. The fabrication of the bioactive bilayer scaffold
was done by placing the electrospun mats in polydimethylsi-
loxane molds and then adding 100 yuL of nanocomposite
hydrogel precursor to each mold, followed by UV cross-linking
for 60 s. The wounds treated with different materials, including
GFS and GLS and bilayer adhesive (BLS) scaffold and control
(untreated) showed that accelerated wound closure was
significantly observed in GLS and BLS scaffolds by day 7.
After day S, proliferation of cells with multiple attachment sites
was visible. The histologic evaluation further revealed better
wound healing performance as compared to the control
groups.

Most of the gelatin-based solid wound dressings are viewed
as ideal hemostatic materials and have spongy struc-
tures."*'~"** Gelfoam (Upjohn, Kalamazoo, MI) and SURGI-
FOAM (Ethicon, Johnson & Johnson, United States) powder
are examples of gelatin-based solid and powder dressings,
respectively.'*>'*® SURGIFOAM powder can be spread on the
outline of the bleeding surface to have a hemostatic effect.'””
For these hemostatic effects, gelatin has been extensively used
as a tissue adhesive for wound closure.''®

3.1.3. Alginate. Alginate is a polysaccharide abundantly
found in brown algae and is a copolymer of a-L-guluronic (G)
and 1,4 linked-f-p-mannuronic (M) acid residues. The water-
soluble sodium salt of alginate allows it to form a highly viscous
solution at very low concentrations of polymer."**"*” Due to
high acid content, it undergoes spontaneous and mild gelling
by binding with divalent cations, such as barium (Ba**),
strontium (Sr**), calcium (Ca?*), copper (Cu**), cadmium
(Cd?"), zinc (Zn*"), or cobalt (Co**).""*"'* Calcium ions are
mainly responsible for the hemostatic effect of calcium alginate
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dressings. These dressings yield 10 times better healing
performance than normal paraffin gauze."*”'*" Calcium
alginate dressings also reduce the pain and sarcoma formation
by absorbing liquid and forming gel at wound exudates,
simultaneously exchanging Ca®>* with Na* from body fluids,
eventually causing hemostasis. Alginate is considered as a
potential candidate to be used as wound dressings in the form
of films, membranes, hydrogels, and sponges.139 It also
provides a moist environment favorable for re-epithelialization
and rapid granulation during wound healing.

The alginate dressing swells and forms a gel at the wound
surface, thus allowing its easy removal, and reduces the pain
associated with the dressing replacement.'** Sodium alginate/
poly(vinyl alcohol) (PVA) electrospun mats encapsulating
ZnO NPs were fabricated for exhibiting antibacterial
activity.'* Dressings prepared by alginate/PVA blends with
therapeutic cargos (neomycin, lidocaine, and papain) have
been shown to prevent wound scarring.'** Also, the alginate/
PVA nanofibers were caPable of transdermal delivery of the
antibiotic ciprofloxacin.'** Alginate-based hydrogel mem-
branes comprising pluronic F-127, poloxamer 407, and
poly(vinyl alcohol) have been shown to accelerate wound
healing by exploiting individual properties of conjugated
polymers. This thermosensitive hydrogel membrane loaded
with the drug amikacin showed significant antibacterial activity
against P. aeruginosa and S. aureus. In vivo studies revealed
greater re-epithelialization, faster wound closure, and gran-
ulation tissue formation.'*® The high functionality of alginic
acid makes it a suitable biopolymer for biomedical applications,
for skin regeneration.''*

3.1.4. Hyaluronic Acid. Hyaluronic acid (HA) is a linear
nonsulfated glycosaminoglycan (GAG) composed of alternat-
ing units of a-1,4-p-glucuronic acid and f-1,3-N-acetyl-D-
glucosamine residues, present in most ECM tissues.® It is used
for dermal and epidermal reconstruction due to augmentation
of keratinocyte and fibroblast proliferation.l‘w’148 In addition,
less antigenic behavior of HA makes it a suitable wound
sealant.""* The hygroscopic nature and high molecular weight
of HA make it a suitable candidate for developing hydrogels,
but limitations such as poor mechanical properties and fast
degradation, due to its hi§h viscosity, inhibit its widespread use
for skin regeneration.lw’1  To overcome these, HA fibers have
been reported by dissolving HA in solvents or blending with
other polymers to aid the fiber formation by modifying the
solution viscosity.">'~'** Besides, the chain length of HA plays
a vital function in its physiological response. The high
molecular weight HA is reported to inhibit cell proliferation,
angiogenesis, and pro-inflammatory signals, whereas short
chained HA with 3 to 10 disaccharide units supports a pro-
inflammatory response and promotes angiogene-
Sis.ll3,ll4,155,156

HA-based antibacterial wound dressing has been prepared
by blending modified HA (oxidized HA as HA-CHO) with &-
polylysine (EPL) via dual cross-linking. The dual-functional
hydrogel showed significant antibacterial activity against S.
aureus and E. coli and a 2-fold increase in wound healing rate as
compared to commercial fibrin glue."” Nanofibrous wound
dressings were also prepared by loading keratin (KR) and HA
as bioactive agents into the core structure of poly(ethylene
oxide) (PEO) and PCL polymers via coaxial and emulsion
electrospinning techniques.'>® The HA and KR incorporation
resulted in increased cell proliferation and viability and
accelerated healing for wounds such as burns and diabetes-

https://doi.org/10.1021/acsabm.2c00035
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related ulcers. HA-based nanofibrous dressing with collagen
fabricated using electrospinning resulted in secretion of
proteinases and reduced scar formation."'*"*” So, HA with
other biomaterials in a formulation makes it a strong candidate
for application in skin regeneration.’

3.1.5. Chitosan. Chitosan is a linear polysaccharide
composed of glucosamine and N-acetyl glucosamine units
prepared by deacetylation of chitin, by alkaline or enzymatic
hydrolysis."'* The higher degree of deacetylation increases cell
compatibility and biodegradability, while reducing the
inflammatory responses.''” Gel-forming properties, physiolog-
ical inertness, non-toxicity, chelation of heavy metal ions,
biocompatibility, and remarkable affinity to proteins make
chitosan a promising wound dressing material." *'*>*°" It also
helps in natural blood clotting and reduces pain by blocking
nerve endings.''* For wound healing, chitosan-based hydrogels
could be prepared by using various techniques such as
photopolymerization and chemical or ionic cross-linking via
formation of polyelectrolyte complexes or in the presence of
anionic polymers.*’

Chitosan also exhibits antifungal, antibacterial, mucoadhe-
sive, and hemostatic properties that do not stimulate
inflammation post transplantation.'>'®® For example,
HKUST-1/chitosan/PVA fibers reported significant antimicro-
bial activity (99% efficiency) against S. aureus and E. coli."**
HKUST-1 is a copper metal—organic framework (Cu-MOF),
with good biocompatibility and physicochemical and anti-
bacterial properties for full-thickness skin wound repair. Also,
these fibers were found to be more efficient in wound healing
with less inflammation, as compared to chitosan/PVA fibers
and commercial chitosan dressings. In general, electrospun
chitosan membranes show improved wound healing when
loaded with bioactive agents and blending with other polymers
such as PEG, PVA, alginate, and gelatin.lé5

3.1.6. Fibrinogen. Fibrinogen is a glycoprotein found in the
blood and is associated with the hemostatic phase of wound
healing.'®° Fibrin derived from the enzymatic cleavage of
fibrinogen by thrombin is crucial to stop bleeding and
migration of cells during wound healing.''” Fibrin sealant
was one of the first products fabricated from fibrin for use in
various surgical procedures for hemostasis and tissue sealing.
Another fibrin-based product, “Bioseed” (DCM Shriram
Limited), has been developed by mixing fibrin with
keratinocytes to treat chronic wounds.'®” For their hemostatic
and anti-inflammatory activities, thrombin and fibrinogen
bandages have been evaluated in a swine model to treat full-
thickness lesions.'®® Cross-linking of fibrin with other
biopolymers improved its inherent poor mechanical properties
and decreased its rate of de§radation during in vitro formation
of pure fibrin scaffolds.'*”'"°

3.1.7. Silk Fibroin (SF). Silk fibroin (SF) is a fibrous protein
naturally produced by some insects and spiders, mainly by
Bombyx mori.'”"'7* As a biomaterial, it possesses distinct
properties, such as re-epithelialization, excellent biocompati-
bility, minimal immunogenicity, enhanced biosynthesis of
collagen, elimination of scarring, and hemostatic and anti-
inflammatory activity, making it a notable biomaterial for skin
regeneration.173 SF/HA scaffolds with 5% chitosan were
reported with better angiogenesis and collagen deposition.'”*
Keratin when introduced into the silk scaffolds led to
improvement in adhesion and proliferation of human dermal
fibroblasts.'”> SF has been processed by electrospinning to
create bioactive dressings. Recently, dual-cross-linked SF-based
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hydrogel dressing has been developed with improved
injectability and mechanical properties, rapid self-healin
behavior, long-term stability, and good biocompatibility."”
An in vivo study in a full-thickness skin defect model showed
that a curcumin encapsulated SF-based hydrogel resulted in
improved wound healing performance with higher collagen
deposition, granulation tissue thickness, and upregulating
VEGF and decreased inflammatory response.

In another study, a PLCL/SF nanofibrous membrane loaded
with the natural compound oregano essential oil was
fabricated. Application of this nanofibrous membrane accel-
erated wound closure with complete epithelialization, gran-
ulation tissue formation, collagen deposition, and angio-
genesis.177 In addition, these nanofibrous membranes were
found to be antibacterial, anti-adhesive, and biocompatible.
Some other natural compounds reported together with SF are
grape seed extract and Vitamin C for skin regeneration.'”*'”*

3.1.8. Cellulose and Its Derivatives. Cellulose is among the
most generous biopolymers present in nature and is the main
component of the cell walls of algae, bacteria, and plants.
Structurally, it is composed of chains of ﬂ—D—%lucose units held
together by p-1,4-glycosidic linkages."””"*" Cellulose is a
highly hydrophilic biopolymer but is generally insoluble in
water.'"> The origin of cellulose is one of the main factors
affecting its inherent features. In comparison to plant-derived
cellulose, bacterial cellulose is relatively porous, highly pure,
and more biocompatible.'"” It is produced by certain bacteria
belonging to the genera Acetobacter, Agrobacterium, and Sarcina
ventriculi.'”

Cellulose derivatives, also known as cellulosics, are semi-
synthetic biopolymers with high solubility in water. These
biopolymers exhibit many advantages regarding properties
such as biodegradability, biocompatibility, non-immunogenic-
ity, sustainability, non-toxicity, mechanical strength, thermog-
elling behavior, and antibacterial effects. Cellulose derivatives
are also known to function as stable scaffolds to encapsulate
several bioactive agents with advantageous therapeutic effects
for skin tissue restoration, which makes them attractive
materials for wound healing applications.'®'

Cellulose derivatives can be primarily divided into two major
categories: cellulose ether derivatives and cellulose ester
derivatives with specific physiochemical and mechanical
characteristics.'®> The latter are extensively used as enteric
coated (enteric coatings are polymers which prevent the
dissolution of drug in an acidic environment but allow the
release of medication in the intestine) drug delivery systems
and exhibit excellent properties to form films. Among these are
cellulose acetate phthalate (CAP), cellulose acetate (CA),
cellulose acetate trimelitate (CAT), cellulose acetate butyrate
(CAB), hydroxypropylmethylcellulose acetate succinate
(HPMCAS), and hydroxypropylmethylcellulose phthalate
(HPMCP) under organic cellulose ester derivatives and
cellulose sulfate (CS) and cellulose nitrate (CN) under
inorganic esters derivatives category.lg‘%’1

Cellulose ether derivatives have high molecular weight and
are highly applicable in the pharmaceutical domain; some of
these derivatives include sodium carboxymethylcellulose
(NaCMC), methylcellulose (MC), hydroxypropylmethylcellu-
lose (HPMC), ethylcellulose (EC), hydroxyethylcellulose
(HEC), hydroxypropylcellulose (HPC), benzylcellulose
(BC), and hydroxyethylmethylcellulose (HEMC).'*>'%¢

To enhance regeneration of damaged tissue areas,
mineralized poly(vinyl alcohol) (PVA)/sodium alginate (Alg)

https://doi.org/10.1021/acsabm.2c00035
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Figure 4. (A) Fabrication of BC-based dressings containing &-polylysine (¢-PL), cross-linked by a biocompatible and mussel inspired
polydopamine (PDA). (B—D) Antibacterial assessment of BCP@e-PLn: (B) digital photographs presenting the viable bacterial colonies after
treatment with different groups; (C) quantitative analysis of samples against S. aureus and (D) E. coli. (E—G) In vivo wound healing: (E) images of
the infected wounds at predefined time intervals; (F) reduction in the wound size at different times; (G) wound closure time corresponding to
different groups. Reproduced with permission from ref 190. Copyright 2021 American Chemical Society.

hydrogels were incorporated with TEMPO-oxidized cellulose
nanofibrils (TCNFs). These mineralized hybrid hydrogels
showed low cytotoxicity and a significant increase in cell
viability and, thus, are promising for bone and wound healing
applications."®” Contrarily, Sun and co-workers employed 3D
bioprinting technology to develop a TCNFs/casein-based 3D
composite hemostasis scaffold to control blood loss in
traumatic hemorrhage. The 3D cell culture study demonstrated
that 3D composite scaffold could promote growth and
proliferation of NIH3T3 fibroblast cells, which is considered
crucial for wound healing. Hence, TCNF-based bioinks could
be used to develop 3D composite scaffolds via bioprinting with
potential to accelerate blood clotting and wound healin§,
thereby reducing blood loss during traumatic hemorrhage.'®
Among the dressing family, oxidized regenerated cellulose
(ORC)/collagen dressings are associated with promising
results to augment wound healing,'®” Statistically, there is a
significant increase in percent wound area reduction and
wound closure rates in patients receiving ORC/collagen
dressings compared with standard dressings. Further, the
properties of bacterial cellulose (BC) can be tailored to
develop a potential composite with accelerated wound healing
ability in diabetic wounds. BC-based dressings have great
potential as addressing material for infected wounds in future
clinical applications for promoting infectious wound healing
(Figure 4)."”° Khalid and co-workers developed a BC-matrix
braced with multiwalled carbon nanotubes (MWCNTs)
resulting in controlled infection and accelerated healing of
diabetic wounds. Macroscopic analysis of the wound revealed
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that the diabetic wound closure was faster in the BC-MWCNT
group (99% healing) as compared to the negative control.'”!

The application of nanomaterials with the potential to
accelerate wound healing has proven beneficial for patients and
health care systems. Interestingly, studies have shown
significant wound healing effects of graphene oxide (GO)/
cellulose nanocomposites on the skin wounds of the dorsum of
rats. An in vitro wound scratch assay revealed that the GO/
cellulose nanocomposite is biocompatible and could also
promote cell migration. Over the treatment period, the
nanocomposite exposure could increase the rate of wound
closure (P < 0.0001) as compared to the contralateral wound
treated with saline.'””

In addition, cellulose-based hydrogels offer immense
application in controlled delivery systems and tissue engineer-
ing."” A self-cross-linking dialdehyde carboxymethyl bacterial
cellulose/chitosan composite (S-DCBC/CS) gel was prepared
by Zhu and team with improved antibacterial potential. The
composite exhibited directional adhesion antibacterial effects
which could attract the bacteria onto the surface of the
composites. The wound healing analysis was carried out on a
deep second-degree infected scald of a Bama miniature pig,
and the healing rate of S-DCBC/CS was up to 80% after 3
weeks. CS and S-DCBC/CS also showed excellent anti-
bacterial activity with bacteriostatic rates higher than 90%."”*

Recently, a green approach was employed to develop
antibacterial cellulose hydrogels with promising antibacterial
activity and wound healing. A transparent wound dressing
from bamboo parenchymal cellulose loaded with rifampicin
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(RIF) was prepared and reported. The cellulose hydrogel
exhibited ~82.13% drug loading efficiency. The diameter of
the wound in mice treated with HLF (hydrogel loaded with
RIF) decreased from S to 2 mm on day 11. More than 60% of
wounds were found healed in murine wound models by the
11" day of hydrogel implantation. The cellulose hydrogel
showed great potential for excellent transparency, wound
healing, antibacterial effect, and biocompatibility.'”*

Overall, it has been well established that a cellulose
derivative alone or in combination with other natural and
synthetic polymers can exhibit appreciable therapeutic effects
on wound healing. Owing to their high biocompatibility, good
physicochemical properties, biodegradability, low cost, and
ecofriendly nature, cellulose and its derivatives are considered
thoughtful candidates for biomedical and pharmaceutical
domains."®'

3.2. Synthetic Polymers. Synthetic polymers are typically
inexpensive, and unlike natural polymers, they can be produced
easily with batch-to-batch uniformity. In addition, synthetic
polymers are mechanically more stable with controlled
degradation rates.”'® The most used synthetic polymers for
wound healing treatment are discussed briefly in the following
sections.

3.2.1. Poly 1-Lactic Acid (PLA). PLA is an aliphatic polyester
synthetically derived from lactic acid and cyclic diester lactide
monomers, which are derived from naturally occurring corn
and rice.'"? A variety of techniques such as freeze dying, wet
spinning, electrospinning, and thermally induced phase
separation have been employed to develop PLA-based scaffolds
with tunable mechanical properties, architecture, and geome-
try, as required for wound healing applications.”” Due to the
disadvantages, such as low degradation rate, shrinkage, and
poor hydrophilicity, PLA has often been used in combination
with other natural polymers for fabricating tissue engineering
scaffolds.”" "

For example, biodegradable PLA-based nanofibrous dressing
mats were fabricated with hydrophilic cellulose acetate and/or
PEO for enhanced wound healing and controlled release of a
sulfonamide analog which is used for treating bacterial
infections.'”” A novel sulfonamide analog, N-(3,4-diamino-7-
(benzo[d]thiazol-2-yl)-6-oxo-1H-pyrazolo[4,3-c]pyridin-
5(6H)-yl)benzenesulfonamide (HBSP), was synthesized, and
it showed remarkable improvement in wound healing and
antimicrobial characteristics against Escherichia coli (E. coli),
Staphylococcus aureus (S. aureus), and Streptococcusmutans (S.
mutans). In another instance, PLA modification with Arg-Gly-
Asp peptide (RGD) resulted in targeted delivery of endothelial
progenitor cells (EPCs)."”® Moreover, the developed scaffold
exhibited improved cell adhesion and vascular regeneration in
the dermal wound model.

Altogether, as a biomaterial, unless used in combination with
other biomaterials, PLA has limited value for skin substitutes
for its long degradation times.’

3.2.2. Poly(e-caprolactone). PCL is a biocompatible
semicrystalline polyester produced by ring-opening polymer-
ization of e-caprolactone.'” PCL scaffolds can be fabricated by
using various techniques, namely electrospinning, solvent
casting, photopolymerization, fused deposition modeling,
extrusion deposition, and low-temperature deposition. Since
it can stimulate collagen production, PCL is extensively used
for application in wound healing.””’ To improve a scaffold’s
mechanical resistance, hydrophilicity, wound healing efliciency,
and tissue repair processes, PCL is used in combination with
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other natural polysaccharides, such as cyclodextrins,”'~***

alginate, gelatin, or chitosan.''>?%>7>%

For instance, a PCL/(+)-catechin/gelatin-based bilayer film
was developed by air-jet spinning which showed high
antioxidant activity and excellent biocompatibility and wound
healing properties.””® In another study, a nanofibrous wound
dressing based on PCL/quaternized chitosan-graft-polyaniline
with good electroactivity, antioxidant ability, and antibacterial
activity was developed by electrospinning.””” Another PCL-
based nanofibrous wound dressing encapsulating Ag/hydrox-
yapatite was developed that inhibited bacterial infection while
simultaneously enhancing wound healing activity.”"’

3.2.3. Poly(ethylene glycol) (PEG). PEG is an FDA
approved biocompatible, hydrophilic, and non-immunogenic
polymer obtained by the polymerization of ethylene oxide. It
exhibits distinct advantages over natural polymers such as
better control over compositional and structural properties.' "’
For treating diabetic wounds, PEG is frequently blended with
other polymers such as PLGA and chitosan to achieve stable
thermal, crystallinity, and mechanical properties.”'" The use of
PEGs vyields improved hydrophilicity, scaffold porosity, and
oxygen permeability.”'> For example, PEG/NanoCer rendered
potential advantages in improved wound healing and
acceleration through fibroblast proliferation, angiogenesis
stimulation, and granulation tissue formation.”"®> PEG-based
hydrogel demonstrated excellent biocompatibility, non-immu-
nogenecity, and resistance to protein adsorption, thereby
making it suitable for biomedical applications, drug delivery,
and tissue engineering.”'*

These hydrogels have been used as injectable antibacterial
dressings and promote wound healing.”"> Moreover, dressings
for odor adsorption were also developed using an activated
carbon containing PEG-based hydrogel to treat malodorous
wounds (wounds with an unpleasant smell).”'® Hydrolytically
labile hydrogels can be obtained by copolymerization of PEG
with commonly degradable a-hydroxy acids deduced from
glutamic acid, lactic acid, or propylene fumarate resulting in
degradable composite systems for the preparation of bioactive
scaffolds of musculoskeletal, dental pulp, vascular, and
endothelial tissues.”"’

3.2.4. Polyurethane (PU). The biodegradable polyurethanes
are extensively used in wound healing applications as
semipermeable membranes for providing a moist environment
and protecting the wound from bacterial infections.''”*'" For
example, PU/propolis membranes have been used as a
protective layer over the PCL/gelatin scaffold to protect the
wound from external contamination and dehydration. This
bilayer wound dressing significantly accelerated collagen
deposition and wound closure in the rat’s skin wound
model.”'® Tt is also used to improve the degradation ability
and weak mechanical properties of natural biopolymers.®
Vegetable oil-based PU wound dressings were developed with
efficient antimicrobial activity against various microbial strains
(100% bacterial reduction against Candida albicans, S. aureus,
and Pseudomonas aeruginosa) and good cytocompatibility.”"”
The mechanical properties of PU-based hydrogel were
strengthened by incorporating curcumin. These hydrogels
also showed strong antibacterial, antioxidant, and antitumor
properties.220 Composite wound dressings were created using
PU as a substrate for natural polymers such as collagen to
improve their physical properties.'””

3.3. Injectable Hydrogels for Targeted Delivery of
Biologics. Hydrogels are the cross-linked networks of natural
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Figure S. (A) In vivo wound closure assessment as studied on distinct treated groups for experimental days 1, 9, 15, and 21, in diabetic Wistar rats.
OG 2 (Oleogel 1) and OG 4 (oleogel 2) denote Oleogel of 2 and 4% w/v, respectively. CG represents composite gel of 2% w/v. Reproduced with
permission from ref 230 Copyright 2021 Nature. (B) (a) Representation of the sol-to-gel phase transition of a solution when sprayed onto a wound
area and exposed to visible light to form an adhesive and elastic antimicrobial hydrogel layer, and (b) cross-linking scheme of the hydrogel.
Reproduced with permission from ref 234. Copyright 2017 Elsevier. (C) (a) Schematic representation of the injectable and self-healing Ag(I) thiol
(Au-S) coordinative hydrogel prepared by cross-linking 4-arm-PEG-SH with AgNO;, (b) in situ encapsulation of desferrioxamine drug (DFO) to
obtain a multifunctional hydrogel system for diabetic skin wound repair, (c) foot ulcers of type I diabetes (left) and therapeutic effect after hydrogel
treatment (right), and (d) mechanism of the hydrogel in repairing skin defects through injection. Reproduced with permission from ref 243.

Copyright 2019 Nature Publishing Group.

or synthetic hydrophilic polymers that retain large amounts of
water in their three-dimensional networks, without any
collapse.””’ Lately, hydrogels have emerged as strong
competitors for smart functional materials for their unique
characteristics. The most outstanding applications of hydrogels
include for controlled drug delivery and biomedical implants
(for example, contact lenses and artificial muscles, biosensors,
and wound dressing).”>*~** In this section, use of hydrogels
for targeted delivery of various biologics for wound healing
therapies/to foster wound repair will be discussed.

Hydrogels are potential candidates for wound dressings as
they closely mimic the native skin microenvironment, thanks
to their porous and hydrated molecular structure which fastens
and improves the body’s own wound healing process.”**~***
They also aid in forming physical barriers against pathogens
and remove excess exudate from the wound site.'” Such
hydrogels that are introduced in the body in a liquid state via a
syringe and form solid gels in the physiological milieu are
referred to as injectable hydrogels.

The major compelling advantages of injectable hydrogels are
the involvement of a minimally invasive technique and the
ability to bypass first-pass metabolism.”*” The injectable and
self-healing anesthetic Oleogel, derived from glycolipid, was
developed, which showed better antibiofilm and wound closure
performance in a diabetic rat wound model.”*° Additionally, a
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composite gel was also prepared by encapsulating curcumin in
Oleogel. Both the composite and Oleogel showed enhanced
skin wound repair in diabetic induced Wistar rats by
controlling free radical generation, promoting collagen syn-
thesis, and further, regulating tissue remodeling phases. The
results revealed that 97% and 98% of wound healing was
observed in diabetic rats treated with composite gel and
oleogels, respectively (Figure SA). The soft elastic nature of
hydrogels extends the ease of application and removal of
hydrogels following wound healing, highlighting them among
various other wound healing dressings. They can also impart
cooling and soothing effects to cutaneous wounds by lowering
the temperature.”’

The ability of hydrogels to encapsulate bioactive agents/or
cells is yet another notable feature holding an advantage for
topical administration for prolonged release of respective
agents.””” Specific mediators such as antiseptics, antibiotics,
antioxidants, anti-inflammatories, and stem cells could be
delivered to ablate infection and resolve inflammatory issues
associated with chronic wounds.””’” In addition, hydrogels also
propel sustained and controlled release of drugs simply by
altering the cross-linking ratio as a function of polymer
composition and molecular weight.”*> Moreover, hydrogels
can also be employed to deliver stem cells or bioactive agents
such as cytokines or other growth factors to expedite healing,
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increase ECM deposition, enhance re-epithelialization and
angiogenesis/neovascularization, and ultimately promote skin
regeneration.””” These bioactive agents have to be incorpo-
rated at an appropriate dosage within hydrogels and delivered
to/at the targeted site in active and functional conditions."’

The advancement in technology has led to development of
various “in situ” forming sprayable hydrogels as wound
dressings. These in situ hydrogels are formed by a sol-to-gel
transition under external physical or chemical cross-linking and
can be injected via minimally invasive techniques (Figure
5B).”** Such hydrogels exhibit numerous advantages, such as
low production costs and simple application without patient
compliance.””® Recently, protein-based injectable hydrogels
have grabbed the attention of researchers for their good
biocompatibility and inherent biofunction. Keratin and Au(III)
salt developed an injectable hydrogel that has been utilized as
hemostatic and wound dressing materials.”*® The developed
keratin-based injectable hydrogel exhibited good hemostatic
effects in both tail amputation and liver injury models. Further,
a deferoxamine-loaded hydrogel exhibited an advantageous
wound healing effect in a full-thickness excision wound model.

3.3.1. Hydrogels Encapsulating Bioactive Agents. Various
bioactive agents including cytokines, GFs, chemokines, and
drugs have been encapsulated within hydrogels for skin
regeneration.'®***® For prompt delivery of GFs, polymeric
materials such as alginate, chitosan, dextran, HA, or PU have
been used to prepare wound healing scaffolds.””” The co-
encapsulation of GFs with another active component such as
antibiotic, antioxidant, or cytokine enhances wound healing,
thereby developing a dual-drug delivery system (DDS).*”
Relying on this strategy, Guo and team developed an in situ
gel-forming nanoparticle/hydrogel system co-encapsulating
EGF and curcumin.”*” This DDS (EGE-Cur-NP/H) resulted
in improved tissue remodeling and wound healing as compared
to controls—nanoparticle/hydrogel (NP/H), Cur-NP/H, and
EGF-NP/H.

Thermosensitive chitosan hydrogel-based wound healing
systems have been reported for the prolonged release of PDGF
receptor and histatin 1 (Hstl) for enhanced cell adhesion,
migration, and angiogenesis, thus resulting in accelerated
wound healing.”*>**' "An electroactive injectable hydrogel-
based novel wound dressing loaded with amoxicillin was
reported by Guo and co-workers. The biocompatible polymer
N-carboxyethyl chitosan (CEC) and oxidized hyaluronic acid-
graft-anilitetramer (OHA-AT) were used to fabricate con-
ductive OHA-AT/CEC hydrogel dressings with good anti-
oxidant, antibacterial, electroactive, and in vitro biodegradation
properties.242

Chen and co-workers developed an injectable, self-healing
coordinative hydrogel with angiogenic and antibacterial
properties for diabetic wound regeneration.”*> The hydrogel
was prepared by coordinated cross-linking of multiarm
thiolated PEG (SH-PEG) with silver nitrate (AgNO;) loaded
with an angiogenic drug, desferrioxamine (Figure SC).

In an instance, both non-healing chronic diabetic wound and
complete skin regeneration were effectively addressed by a
polypeptide-based FHE hydrogel system.”** These hydrogels
were comprised of pluronic acid, oxidative hyaluronic acid, and
poly-e-L-lysine and encapsulate exosomes. They significantly
increased the healing efficiency of diabetic full-thickness
cutaneous wounds, as depicted by fast angiogenesis, re-
epithelization, enhanced wound closure rates, and collagen
deposition within the wound site. Further, the in vivo studies
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demonstrated the improved migration, proliferation, and tube
formation ability of human umbilical vein endothelial cells
(HUVECs).

In another study, a multifunctional injectable composite
hydrogel was prepared to improve diabetic wound healing by
promoting revascularization and to provide antibacterial
effects.”™ This multifunctional injectable hydrogel was
prepared by incorporating cerium-containing bioactive glass
(Ce-BG) into a gelatin methacryloyl (GelMA) hydrogel. The
Ce-BG/GelMA hydrogels promote migration of endothelial
cells and tube formation by releasing Si ions. In addition, this
hydrogel showed good cytocompatibility and exhibited excep-
tional antibacterial properties. Also, an in vivo study in diabetic
rats revealed significant improvement in wound healing by
accelerating the formation of granulation tissue, angiogenesis,
and collagen deposition. Further, the immobilization of Ag in
chitosan/Ag hydrogels laden with basic FGF (bFGF)
facilitated the controlled bFGF release for effective treatment
of both acute and infected chronic wounds.**®

Inclusion of NPs in a thermoreversible gel has various
advantages including a semiocclusive effect (to permit suitable
gas exchange), ease of administration, and prolonged release of
bioactive agent, ultimately leading to accelerated wound
healing. Ganem-Rondero and team recently reported the
inclusion of PLGA nanoparticles encapsulating platelet lysate
in a pluronic F127-based smart thermoreversible system.**’
The presence of lysate enhanced the wound repair by
promoting cell migration and proliferation. From various
studies, it has been observed that using bioactive agents in
combination with other agents or employing carriers have
significantly improved the wound healing process. Moreover,
therapies with significant healing could be developed
considering the patient’s clinical and metabolic features,
genetic variability, and wound type.”*

3.3.2. Hydrogels Encapsulating Stem Cell Therapies. Stem
cells demonstrate immense capacity in regenerative medicine
to improve wound healing by facilitating the body’s own
natural process stimulating the tissue growth.”*® Utilization of
hydrogel as a carrier for stem cell delivery improves the wound
healing process by increasing the residence time of stem cells
within the wound site.””” Injectable gelatin microcryogels
loaded with human adipose-derived stem cells (hASCs) have
shown enhanced wound healing, when compared to free cell
injection.”*”**® For sustained release of hASCs, a blend of
gelatin and chitosan thermosensitive hydrogel have been
developed. Such a composite could potentially be useful for
treating ischemic diseases and promoting therapeutic angio-
genesis.z"’3 To treat diabetic ulcers, multifunctional cross-linker
was employed to fabricate n-isopropylacrylamide (NIPAM)-
based, thermosensitive hydrogel encapsulating bone marrow-
derived mesenchymal stem cells (BMSCs). The hydrogel
stimulated BMSC secretion of growth factors, i.e., TGF-f1 and
bEGEF, resulted in improved chronic inflammation of wounds
and greater wound contraction.”*’ The BMSCs laden
thermosensitive hydrogel also promoted collagen deposition
and epidermis/dermis remodeling after wound healing.”>

A distinct way for application of stem cells to promote
wound healing was provided by ASCs-loaded PVA hydrogel
dressings. For ASCs’” adherence and proliferation, one side of
the PVA dressing was modified with photoreactive gelatin (Az-
Gel) using UV irradiation. The modification of the PVA
dressing with Az-Gel led to the improved bioactivity and
surface and mechanical properties of the hydrogel, thereby
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accelerating the wound healing.”>” The burn wound in the rat
model was effectively treated with HA hydrogel encapsulating
ASCs covered and protected with acellular dermal matrix
(ADM). ADM-HA/ASCs enhanced the expression level of
TGF-$1 mRNA, thereby leading to improved angiogenesis,
reduced inflammation, and enhanced granulation tissue
formulation, ultimately accelerated burn wound repair.”>*
From the reported findings, the combined therapy employing
stem cell laden hydrogels would be of significant value for skin
tissue engineering. A summary of different hydrogel based
wound dressings developed to promote and accelerate wound
healing process is given in Table 2.

3.4. Nanoengineered Biomaterials. The progress in
nanotechnology-based therapeutics has led to several innova-
tions intended to augment complex wound healing and skin
regeneration. They could satisfy the requirements of cutaneous
wound healing including topical delivery and short-term use of
a healing agent.”’® Moreover, they could also target cell-type
specific or multifactorial wounds.

The nanotechnology-driven biomaterials could be exploited
at discrete levels. For instance, they could serve as a delivery
vehicle for the therapeutic agent, or the biomaterial itself could
exhibit intrinsic properties beneficial for wound treatment, or it
could be utilized as both.””" The facile modification of the
nanomaterial to provide desired properties, viz. size, surface
energy, charge, and wettability, is favorable for therapeutics.
Furthermore, the nanomaterials attain good biocompatibility,
favorable moist environment for accelerated wound healing,
and sustained drug release.””” As discussed further in this
section, the commonly used nanomaterials as delivery vehicles
include inorganic NPs, lipid NPs, liposomes, polymeric NPs,
antibiotics, and GF-based NPs.>”*?”* Table 3 enlists various
nanoparticle-based biomaterials used in wound healing.

3.4.1. Inorganic Nanoparticles. Recently, researchers have
examined the potential of inorganic nanoparticles in various
pathological conditions including wound healing.””* Some of
the inorganic metal and metal oxide NPs that have shown
excellent therapeutic properties for wound healing include Au,
Ag, selenium (Se), terbium (Tb), Cu, zinc oxide (ZnO),
titanium dioxide (TiO,), iron oxide (Fe,0;), and cerium oxide
(Ce0,).””>*’® In addition, Ag and ZnO NPs have been
significantly evaluated as antimicrobial bandages for treating
infection sensitive wounds such as burns or diabetic
wounds.”””*”® Generally, AgNPs accelerate wound healing
owing to their neovascularization and anti-inflammatory
effects.”’® Furthermore, they have demonstrated reduction in
inflammation by modulating cytokine levels and elevating re-
epithelialization.

Among other metallic NPs, Cu-based NPs have facilitated
wound healing by promoting angiogenesis, stimulating VEGF,
improving integrin expression, and stabilizing formation of
fibrinogen, collagen, and ECM proteins.””* In addition, copper
oxide-based dressing material was found to induce the
production of VEGF, PLGF (placental growth factor), and
hypoxia-inducible factor-1 alpha (HIF-1a), eventually accel-
erating the wound closure in diabetic mice.””” Likewise, ZnO,
NPs displayed excellent antibacterial activity against Aspergillus
species and P. aeruginosa present in wound infected tissues of
burn patients. The histopathological results illustrated the
accelerated healing of skin wounds by ZnO, NPs in New
Zealand white rabbits in vivo.”®" Similarly, ZnO NPs from a
green resource, Trianthemaportulacastrum Linn, showed
pronounced wound healing through keratinocyte migration
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along with collagen fiber deposition, re-epithelialization, and
tissue granulation.”®" Also, these NPs were permeable through
the dermis and epidermis and exhibited antioxidant and anti-
inflammatory properties, with different blended inorganic NPs
showing superior results.

In this context, a hydrogel was co-encapsulated with asiatic
acid (a triterpenoid) and Zn and CuO NPs for secondary burn
wound healing.”** This formulation showed excellent tensile
strength, large water uptake, porous morphology, and good
antibacterial capacity. Owing to their inherent antibacterial and
antioxidant properties, AuNPs are effective for wound healing
though the inflammatory and hemostasis phases.”*’ Many
research groups have used AuNPs for wound healing
applications such as tissue adhesives, antibiotic delivery, and
laser activated wound healing.”’**%*7%

The unique basal plane structure and shape of graphene
oxide (GO) have attracted many researchers to explore its
potential for wound healing applications.”’* Reduced graphene
oxide (rGO) incorporated with isabgol nanocomposite
scaffolds was pregared by Thangavel and group for diabetic
wound treatment.”*” An in vivo study revealed that the wound
healing was faster in normal and diabetic rats treated with the
as-synthesized scaffolds, as compared to the untreated and
isabgol-treated rat groups. The isolated skin section from the
rGO-incorporated isabgol-scaffold-treated rats exhibited in-
creased collagen concentration, faster re-epithelialization,
increased angiogenesis, and accelerated wound contraction.

In addition to more common metallic NPs, some rare earth
elements such as lanthanides have also proved potent for
biomedical applications. Terbium hydroxide nanorods dem-
onstrated wound healing in murine models by inducing
therapeutic angiogenesis.”*" Zhao et al. conducted in vitro and
in vivo studies in zebra embryonic primary cells and in
transgenic zebrafish model, respectively, thereby revealing that
terbium hydroxide nanospheres and nanorods exhibited
significant pro-angiogenic properties, mediated through redox
signaling.”” These findings enlightened the prospects of
inorganic NPs for wound healing applications and, therefore,
can be envisioned to be extensively used in the near future for
such applications.

3.4.2. Polymeric NPs. Polymeric NPs are biocompatible
colloidal systems, fabricated either in nanocapsule or nano-
sphere form and widely used for controlled and sustained drug
release for tissue healing applications. The most widely used
polymers for preparing polymeric NPs include PLGA,
chitosan, gelatin, alginate, and other polymer combina-
tions.””>*7#*?%*?1 A5 mentioned earlier, these nanoparticle
systems could also be used to deliver therapeutic agents. PLGA
NPs laden with antimicrobial peptide LL37 (PLGA-LL37
NPs) showed improved angiogenesis and regulated the
inflammatory wound response by up-regulation of VEGF and
IL-6.”"* Also, PUs have been demonstrated for improved cell
proliferation by inducing re-epithelialization and angiogenesis
in injured rats.””**** Antifungal Amphotericin B was loaded
into silane-based hydrogel NPs to replace intravenous injection
infusion while reducing its high cytotoxicity. Such hydrogel
systems have potential for reducing fungal growth rapidly
within 3 days in a murine full-thickness burn model, as
compared to free drug solution.””

Furthermore, gelatin-based scaffolds also showed faster
wound closure and enhanced overall healing in rat wounds.””®
A lipid polymer hybrid NP was developed for sustained drug
(norfloxacin) release up to 24 h, having potential in treating
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Table 2. continued

factor beta 1; OHA, oxidized hyaluronic acid; SCS, succinyl chitosan; ILM, insulin-loaded micelles; EGF, epidermal growth factor; hMSCs, human mesenchymal stem cells; PVA, poly(vinyl alcohol); SA,

sodium alginate; bFGF, basic fibroblast growth factor; NO, nitric oxide; SNAP, S-nitroso-N-acetyl-pencillamine; BMSCs, bone marrow stem cells; Col, collagen; hUC, human umbilical cord; WVTR,

water vapor transmission rate; FEP, polysaccharide-based hydrogel dressing; exo, exosomes.
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burn induced infections. These NPs loaded with norfloxacin
also performed well in antimicrobial efficacy tests against P.
aeruginosa and S. aureus.””” Also, fibrin has been widely used
for wound healing and tissue engineering applications as it
increases the immunological response and cell adhesion
properties and reduces inflammation.””® Many other natural
polymers such as HA and elastin have also been investigated
for wound healing,*”***°

3.4.3. Nanocarriers Containing Nitric Oxide. Nitric oxide
(NO) is known to be an intrinsic pro-wound healing agent that
plays a crucial role in cellular growth, angiogenesis,
inflammatory pathways, and ECM deposition and remodel-
ing.”’%?3%2 'NO displays broad spectrum antibacterial
properties, including interference with biofilm synthesis.””**%*
The highest activity of NO synthase (NOS) observed
coincides with the early phases of wound healing.’** Various
nanodelivery systems have been developed for controlled
release of NO with low cytotoxicity and high loading
capacity.”’>?***% In a study, NO-releasing poly(lactic-co-
glycolic acid)-polyethylenimine nanoparticles (PLGA—PEI
NPs were developed for evaluation of the healing activity in
MRSA and P. aeruginosa infected wounds. The embodiment of
PEI/diazeniumdiolate (NONOate) into the hydrophobic
PLGA nanoparticle matrix and suppression of the NONOate
group degradation led to the sustained and prolonged release
of NO and accelerated wound closure in vivo. In addition, the
antibacterial activity of the developed NPs has also shown
enhanced wound healing upon treating them with various skin
infections.***3%°

3.4.4. Liposomes. Liposomes are spherical vesicles consist-
ing of one or more lipid bilayers made of amphiphilic
molecules such as phospholipids. They are non-toxic, skin
compatible, biodegradable, and promising nanocarriers for
drug delivery.””>*"” Liposomes were used to aid the delivery of
madecassoside drugs (wound healing agents with antiaging and
anti-inflammatory properties) for accelerating cutaneous
wound healing, promoting cell growth, and reducing scar
formation.””® They can cover wounds effectively and accelerate
wound healing by creating a moist environment on the surface
of the wound.’” A novel liposome was developed with a
hydrogel core of silk fibroin enclosing bEGF.>'" This liposome
vehicle resulted in accelerated wound healing by inducing
angiogenesis due to the presence of angiogenic bFGF. Also, the
stability of fragile bFGF was exceptionally improved by
liposome with hydrogel in wound fluids.

The secondary infection was controlled by the membrane of
the usnic acid-loaded liposome. The study done on porcine
models revealed the presence of cellularized and granulated
tissue with better collagen deposition.”’' In another study, a
GF complex was integrated with HA and then encapsulated
into cationic deformable liposomes.”’” This elastic liposome
could accelerate the wound closure rate remarkably in diabetic
mouse models, with 58% maximal shrinkage of wound size as
compared to GF complex alone. The result showed that elastic
liposomes exert both prolonged and rapid effects on fostering
chronic wound healing. The propylene glycol nanoliposomes
with curcumin aided in healing second-degree burns in rat
models by avoiding infections and promoting wound
contraction.’’? Regardless of their extensive use, liposomes
are backed by certain demerits such as low reproducibility, low
stability of liposomes, and rapid drug leakage. These are some
major concerns which limit the clinical use of lip-

https://doi.org/10.1021/acsabm.2c00035
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Table 3. Different Nanoparticle Formulations for Wound Healing”

S.

No.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Nanoparticle
formulation

GPNPs

CGA-Lipo-MFX/DEX

AuNPs

MEL-NP

KSNO

PECE modified MA
liposomes

Terpinen-4-ol liposomes

p-CD functionalized
GO

Lipid NPs

RKNPs

CeO,

PDA/PUE

ZnO

CeO, and curcumin

Mesoporous silica NPs

Eu,0;

ZnFe,0, NPs

Heparinized ZnO NPs

NO NPs

MOS-PS-AgNPs

Type of wound

MRSA infected
cutaneous wound

Corneal infection
(keratitis)

Disinfections and wound
dressings

Diabetic wound

Cutaneous wound

Burn wounds

Cutaneous wounds

Bacteria infected wound

Chronic wound

Dermal wound

Diabetic wound

Skin wound

Bacteria infected wound

Injury wound

Inflammation

Skin regeneration/full-
thickness skin wound

Bacterial infected burn

wounds

Acute wounds

CL

Bacterial infected
wounds

Research outcome

-Enhanced antibacterial effect against MRSA

-Increased collagen deposition and tissue remodeling with recovered morphology were
obtained in groups treated with GPNPs

-Showed sustained drug release for at least 12 h, with effective working concentration release
in 60 min

-Inhibited pathogenic growth, thereby improving corneal wound healing

-Achieved significant increase in the zone of inhibition

E. coli: 42 + 0.9 mm (without AuNPs), 13.1 + 1.3 mm (with AuNPs)

S. aureus: 6.4 + 1.2 mm (without AuNPs), 24.8 + 2.4 mm (with AuNPs)

-Exhibited melatonin entrapment efficiency of 27%

-Wound closure experiments showed improved wound healing on treatment with MEL-NP,
as compared to other treatments

-PU/Gel/KSNO biocomposite mats showed accelerated wound healing without
inflammatory reaction and inhibited bacterial growth

-Released NO without cytotoxicity, promoted the proliferation of HUVEC and L929 murine
fibroblasts

-Showed superior wound contraction effects in comparison to the MA liposomes in second-
degree burn experiments using a rat model

-PECE-modified MA liposomes showed better healing effects and surface adhesion
performance than MA liposomes

-The NPs film effectively blocked more than 98% of bacteria
-Inhibited bacteria growth and exhibit suitable biodegradability and procoagulant properties

-Enhanced regeneration of bacteria infected wounds due to good angiogenic, adhesive, and
mechanical properties

-NLC-loaded o/e showed good proliferation and biocompatibility toward normal human
fibroblasts in an in vitro wound healing rat model

-NLC o/e suspension showed the highest lesion reduction at 15-day point of treatment
representing the capability of these nanoparticles to speed up tissue repairing

-RKNPs significantly enhanced cell proliferation and migration in vitro

-Promoted enhanced wound healing by improving vascularization, epithelialization, and
collagen deposition and remodeling

-When used as wound dressings, nCeO, containing PHBV membranes promoted cell
proliferation and adhesion

-HMEC adhered parallel to the individual fibers of PHBV for less than 1% w/w of nCeO,

-nCeO, incorporated PHBV membranes enhanced blood vessel formation

-PDA/PUE NPs possessed excellent swelling capacity and mechanical property

-Increase in PDA/PUE NPs concentration led to enhanced antioxidant capability

-Addition of increased doses of ZnO NPs to the gels resulted in increased retention of
humidity

-Addition of ZnO NPs led to decreased bacterial growth as compared to control gels

-Showed controlled and prolonged drug release, i.e. ~63% in 108 h

-Highly significant antioxidant and in vivo anti-inflammatory activity (~39%)

Showed complete and faster degradation behavior of MSNs, making them a potent tissue
adhesive

-Fast elimination and permeability of MSN-based nanocomposites determined the benignant
inflammation, resulting in outstanding healing outcomes

-FHAE dressing showed excellent cytocompatibility and blood compatibility

-FHAE dressing significantly accelerated the wound healing, promoted skin appendage tissue
regeneration, and enhanced angiogenesis

-NPs showed antimicrobial activity through multiple mechanisms and were more effective
against gram-positive bacteria

-In vitro assay revealed that ZnFe,O, NPs resulted in improved cell migration and
proliferation of cells, with notable shrinkage of the artificial wound model

-Upon implantation, heparinized ZnO NPs showed accelerated wound closure, re-
epithelialization, and decreased collagen deposition

-Addition of heparinized ZnO NPs to chitosan and poly(vinyl alcohol) increased the
mechanical strength 2-fold

-Addition of heparin to ZnO NPs showed a synergistic antibacterial effect.

-NO NPs remarkably decreased the parasite burden of treated animals in one single
application

-At 2 mM, NO NPs remarkably reduced the lesion thickness, promoting clinical healing of
mice

-Suitable for topical administration, and their positive effects were sustained for at least 21
days after therapy

-Displayed excellent antibacterial activity toward wound infectious bacteria

-Promoted faster scarless wound healing

2084

EVE

Ref.
318

319

320

321

322

323

324

325

326

327

328

329

330

332

333

334

335

336

337
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Table 3. continued

S. Nanoparticle
No. formulation Type of wound Research outcome Ref.
-Histological results revealed enhanced epidermis and neoepidermis formation

21. AP-AuNPs Skin infections -AP-AuNPs exhibited a remarkable antibacterial effect toward both Gram positive (S. aureus) 338
and Gram negative bacteria (E. coli) upon light irradiation

-AP-AuNP nanocomposite significantly inhibited bacterial growth and accelerated the wound
healing rate in S. aureus infections.

22.  CeNPs Cardiovascular surgery -The hydrogel showed significant cell viability and enhanced antibacterial efficacy against 339
wound gram positive and negative microorganisms

-In vivo healing of skin wounds was observed in mouse models over 24 days
-After 2 days, the drug release profile of the cerium from the bandage was found to be ~38%
of the total loading

“Abbreviations: GPNP, S-nitrosoglutathione-conjugated poly(lactic-co-glycolic acid); MRSA, methicillin-resistant Staphylococcus aureus; CGA-
Lipo-MFX/DEX, liposomal dexamethasone-moxifloxacin nanoparticle with collagen/gelatin/alginate; AuNPs, gold nanoparticles; S. aureus,
Staphylococcus aureus; E. coli, Escherichia coli; MEL-NP, lecithin-chitosan nanoparticles loaded with melatonin; KSNO, S-nitrosated keratin;
HUVEC, human umbilicalvein endothelial cells; PECE, poly(ethylene glycol)-poly(é&-caprolactone)-poly(ethylene glycol); NPs, nanoparticles; MA,
madecassoside; fCD, f-cyclodextrin; GO, grapheme oxide; RKNPs, recombinant human hair keratin nanoparticles; CeO,, cerium oxide; PDA/
PUE, polydopamine/puerarin; ZnO, zinc oxide; MSNs, mesoporous silica nanoparticles; Eu,O3, europium oxide; FHAE, Eu,0;, reinforced
nanocomposite, ZnFe,O,; zinc ferrite; NONPs, nitric oxide releasing chitosan nanoparticles; CL, cutaneous leishmaniasis; MOS-PS-AgNPs,
nanocomposite of polysaccharide isolated from Moringa oleifera seed, with silver nanoparticles; AP-AuNDPs, antibacterial photodynamic AuNPs.

(A) ﬁ Cells

solution

ﬁ HAMA ﬁ
HASH 1-2959
solution solution

(B)rs

(d)

*a,
Setcaare

~,

Figure 6. (A) Preparation of thiol-modified HA (HA-SH) and methacrylic anhydride-modified HA (MA-HA) bioink and 3D bioprinting of living
constructs. Reproduced with permission from ref 357. Copyright 2019 MDPL (B) (a—c) Bioprinting workflow of biomask fabrication: (a) image
process; (b) printing path generation; (c) 3D printed biomask. (d) Images showing the surgical procedure of biomask application representing
face-shape construction, face creation after a 4-week implantation, 70% skin wound on the face-shaped construct, and biomask application.
Reproduced with permission from ref 371. Copyright 2018 Elsevier.
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314-317 . . .
osomes. Some of the recent research being done in this

field is summarized in Table 3.

3.5. 3D Bioprinting for Advanced Wound Manage-
ment. Autologous skin grafts, wherein the devitalized tissue is
excised and replaced with fresh skin harvested from an
uninjured site of the patient’s body, represent the gold
standard procedure for serious burn wounds.”*’ Depending
on the thickness of these grafts, they can either be split-
thickness skin grafts (STSGs) or full-thickness skin grafts
(FTSGs). STSGs are primarily epidermis (0.15—0.3 mm of
skin), while FTSGs consist of both epidermal and deeper
dermal layers. While STSGs are widely utilized for autologous
reconstruction for their good skin-regeneration capability,
FTSGs are favored for their improved esthetic outcomes and
skin contraction.*****

Primary closure of wounds and reconstruction surgeries
using STSGs are commonly preferred in treating small to
moderate burn injuries and in children.>*> However,
autologous skin grafts lead to ?ainful donor site healing,
scars, and pigmentation disorders.”***** Further, in the case of
extensive skin burns, i.e., where more than half of total skin is
lost and donor sites from which to harvest skin grafts are not
readily available and are at high risk of immunologic rejection,
another option is to use allogeneic grafts from cadavers and
nongenetically identical individuals to treat full-thickness
wounds.*****” Typical bioengineered skin substitutes derived
from cells cultured on a biodegradable scaffold are allowed to
artificially mature (e.g, in a bioreactor) and then are used for
transplantation.”*® In most scenarios, such skin substitutes
consist of two cell types, lack vascular supply, and do not
match the typical anatomy and physiology of the native skin
tissue.”*’ Hence, the quest to obtain ready-to-transplant
artificial skin grafts is growing.

3D bioprinting has recently emerged as the state-of-the art
technology to produce artificial yet multicellular skin grafts
with potential to recapitulate the native archetype for wound
care management.350 In the typical process, autologous cells
are isolated from a patient’s body and expanded in large
numbers in vitro. Thereafter, these cells are deposited layer-by-
layer along with scaffolding materials (also called “bioink”) in a
precise and automated manner, facilitating formation of
complex customized skin equivalents.”®" Hence, skin bioprint-
ing can serve as a prospective solution to STSGs therapy and
pave the way for advanced wound management.

As previously described, wound healing is a highly complex
phenomenon and involves interplay of a series of cells and
biomolecules such as growth factors, cytokines, chemokines,
and others.®”***%%3 o, to facilitate the healing process, natural
biomaterials including collagen, cellulose, chitin, pectin,
alginate, gelatin, hyaluronic acids, etc. are being explored to
formulate bioinks for their biocompatibility, biodegradability,
high moisture content, mechanical stability, and non-toxic
nature.>>* 7> After mixing with cells and other biologics, these
biomaterials are printed as thin cylindrical strands resulting in
3D layered constructs. With significant advancement in
bioprinting technology and knowledge and accessibility to
the above-mentioned natural biomaterials, novel bioactive
wound dressings are under development.

Zhang and co-workers presented a double cross-linked
network of HA hydrogels derived from thiol-modified HA
(HA-SH) and methacrylic anhydride-modified HA (MA-HA)
as a bioink to 3D bioprint wound dressing (Figure 6A).”>’
Nafcillin, an antibacterial drug, was incorporated in the
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hydrogel for an antibacterial effect. The developed dressing
could provide a moist microenvironment at the wound site,
demonstrated high cell viability, and accelerated wound repair.
Recently, Andriotis and co-workers fabricated free-standing,
bioactive patches from pectin bioinks as wound dressings,
which could disintegrate fast in aqueous media.”>® The
antimicrobial and in vitro wound healing activities of the 3D
bioprinted patches were found to enhance with the addition of
particles of chitosan and cyclodextrin inclusion complexes with
propolis extract.

As a therapeutic solution to provide less painful and
augmented wound healing, Maver and co-workers combined
3D bioprinting with electrospinning to fabricate pain-relieving
wound dressings.””” Alginate and carboxymethyl cellulose
(CMC) served as base materials with non-steroidal anti-
inflammatory drug (NSAID)-diclofenac sodium (DCS) and
local anesthetic lidocaine (LID) to fabricate 3D printed
scaffolds and electrospun nanofibers. The dressings demon-
strated fast release of LID for immediate pain relief and
sustained release of DCS for prolonged alleviation of pain,
along with appreciable biocompatibility with keratinocytes.

For burn wound reconstruction, skin bioprinting can either
be done (1) in vitro or (2) in situ. Although both the strategies
were similar in nature, they nevertheless differed in the site of
printing and tissue maturation. The primary objective of 3D
skin bioprinting in vitro is to fabricate viable skin substitutes in
the lab and then implant them in vivo for reparative and
regenerative therapeutics.”*>*®" Notable research has been
performed to develop acellular dermal substitutes (e.§., Integra
and Biobrane), print cell-laden bilayered grafts,****° and
more advanced skin constructs (e.g, Apligraf, Dermagraft,
StrataGraft, and TransCyte).

Although such dermal substitutes have been shown to
improve skin wound repair, most are comprised of two cell
types, fibroblasts and keratinocytes, lack sweat and sebaceous
glands, hair follicles, and pigmentation, and may not induce
neovascularization.**”**® To overcome these, Jorgensen et al.
demonstrated bioprinting of a trilayer skin structure derived
from fibrinogen bioink with suspended human keratinocytes,
melanocytes (to promote pigmentation), fibroblasts, dermal
microvascular endothelial cells (for vascularization), follicle
dermal papilla cells (for hair follicle formation), and adipocytes
(for immunomodulation).”*” Upon implantation on nude
athymic mice, bioprinted skin successfully closed full-thickness
wounds after 21 days, primarily due to epithelial barrier
formation, infiltrating human cells in the regenerated dermis,
dermal maturation, and formation of blood vessels.

In another study, Karande and co-workers described layer-
by-layer 3D printing mediated fabrication of a multilayered
vascularized human skin graft composed of rat tail type I
collagen and human cells.”” The collagen was cross-linked by
mixing cells with a pH reconstitution buffer prior to printing
followed by incubation at 37 °C in skin differentiation media.
The graft was observed to perfuse through both graft and host
microvessels within 4 weeks of implantation on the
immunodeficient mice.

Upon implantation for 14 days, non-vascularized bioprinted
grafts showed a high degree of inflammation and hemorrhage,
as compared to grafts containing human vascular cells.
Regeneration of facial skin wounds is highly complicated
owing to the varied contours and continuous movement.”’’ In
this regard, a 3D bioprinting tool has been explored to design
customized skin substitutes referred to as “BioMask” that could

https://doi.org/10.1021/acsabm.2c00035
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Figure 7. (A) (a) Overview demonstration of the patch employed for foot ulcer applications. (b) Cross-sectional view of smart oxygen generation
and the sensing patch and wound area. (c) Mechanisms for generating oxygen and for sensing it for use on a flexible smart wound dressing. (B) (i)
Surgical setup, (ii) close-up of device during H,O, perfusion showing the generation of oxygen bubbles, and (iii) progression of wound healing in
SKHI mouse; days 0,2, 7,9, 11, 13, and 14 in the oxygenated wounds and days 0, 6, 10, and 14 in the Integra control. Reproduced with permission

from ref 375. Copyright 2020 Nature.

fit onto the facial wounds. Figure 6B shows the workflow for
biomask fabrication.””" In this particular example, the biomask
consisted of cell-laden hydrogel layers and a wound dressing
layer for reducing scarring and promoting wound healing. This
biomask was applied in the skin wound present on the facial
structure of novel animal models in which 70% of facial skin
was wounded.

Conversely, in situ bioprinting involves printing of
autologous precultured cells obtained from skin biopsies at
the wound site followed by skin maturation.’’> In a study,
simulated image-guided in situ bioprinting of a skin graft was
demonstrated onto a phantom burn wound bed created by
mold casting a gelatin-alginate hydrogel with arbitrary 2D
contour and depth for extended application to a clinical
setting.3'73

A recent breakthrough in in situ bioprinting was the
development of a portable clinical bioprinter to print
autologous skin cells “on-site” to accelerate wound healing of
extensive excisional full-thickness wounds.””* The in situ
bioprinting system with integrated imaging technology (for
scanning of the wound area) was able to precisely print
autologous or allogeneic dermal fibroblasts and epidermal
keratinocytes in a fibrin/collagen hydrogel carrier into the
injured area, replicating the skin layered structure. The
repaired excisional wounds with bioprinting demonstrated

2087

rapid wound closure, reduced contraction, and re-epithelializa-
tion. Organized collagen deposition, vascularization, and
keratinocyte proliferation in the regenerated skin were other
significant observations.

For the development of next generation smart wound
dressings, inkjet printing was employed by Ziaie and group for
preparing a paper-based flexible, inexpensive, and biocompat-
ible platform for generation and measurement of oxygen locally
in a wound region.””> The patch was capable of increasing the
oxygen concentration by up to 13% (S ppm) in a gel substrate
within 1 h. In addition, the fabricated platform was also able to
sense oxygen in a range of 5—26 ppm (Figure 7A). Before
implanting the device on the wound, it was calibrated for O,
measurements and attached to a syringe pump carrying 3%
H,0, (Figure 7B). H,0, was then pumped at 200 uL/h
through the device, and a vigorous generation of O, produced
by flow over KMnO, spots was seen by the emergence of gas
bubbles inside the device channel (Figure 7B). Due to the
penetration of the paper barrier and reaction with the wound
bed by H,0, during perfusion, the wound healing rate was
slow in oxygenated wounds, as compared to non-oxygenated
wounds (Figure 7B).

In another recent study, Giinther and team demonstrated in
situ deposition of skin precursor sheets using a hand-held
instrument to repair large area full-thickness burn wounds.*”®

https://doi.org/10.1021/acsabm.2c00035
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The hand-held instrument with a microfluidic printhead was
able to deliver mesenchymal stem/stromal cells (MSCs)
contained in the fibrin bioink directly to the wound bed,
promoting dermal and epidermal regeneration. Such direct
printing of bioinks at the injured site reduced the time of acute
medical intervention, increased the wound repair rate, allowed
rapid production of personalized skin grafts, and warded off
infections due to open wounds. Hence, for clinical applications,
in situ bioprinting is more preferred over in vitro bioprinting for
all the above stated reasons.

3.6. Biomaterial-Based Wound Dressings in Clinical
Settings. An enormous number of wound dressings for
treating skin wounds and burns are available for clinical
applications. Clinically available wounds dressings include skin
substitutes (acellular or cellular; with dermal, epidermal, or
composite determinants) and biomaterials such as hydrogels,
gels, fibers, hydrocolloids, foams, and nanotechnology-based
products, and those are listed in Table 4.

4. CHALLENGES AND CLINICAL PERSPECTIVE

Prior to availability of any wound dressing for clinical usage, it
needs to overcome many barriers, including clinical translation,
FDA approval, and industrial sponsorship. The first issue is the
structural difference between the skin of animal models
(mainly murine and porcine) and humans, which leads to
the variations in the findings at preclinical and clinical
levels. *o!40? Although porcine models share more similarities
with humans, they are quite expensive, thereby limiting their
opportunities for genetic manipulation. Another challenge
involves the exclusion and inclusion criteria for recruitment of
the patients, to maintain the cost of clinical trials without
affecting the recruitment rate.**

The comorbidities, such as diabetes or cardiovascular
disorders, and wound type decelerate the recruitment of
patients.**® Furthermore, the lack of regular and long follow-up
durations is another major limitation in the clinical evaluation.
Inconsistencies in the “standard of care” wound healing among
various clinical centers (such as clinics, private and academic
centers, cities, and countries) have made it difficult to obtain
comparable clinical data from multicenter trials.**>*** In
accordance with FDA guidelines, only wounds with complete
closure as the final event could be accepted.*®® This led to the
negligence of studies with other significant outcomes such as
reduction in the incidences of morbidity, mortality, and
amputation.

At last, the industrial sponsorship for major clinical trials
must be considered as it influences the design of the clinical
trial.**® Various efforts have been made to bypass these
challenges and provide some significant outcomes. In this
regard, there are about 1400 clinical studies that are in the
recruiting, active, or enrolling phase toward wound healing,
including skin and musculoskeletal tissue regeneration. Within
the 1400 clinical trials, the majority of the intervention being
studied are medical devices and drugs (~60%), with minor
classifications being procedures and biologics (20%) (Figure
8A). Like other clinical trials that were categorically evaluated,
most of the studies are conducted in North America and
Europe (~80%) followed by Asia with 13% (Figure 8B).

Among these, hydrogels (~12 clinical studies), gels (~49
clinical studies), fibers (~52 clinical studies), and foams (~36
clinical studies) (clinicaltrials.gov) are currently being studied
for wound healing/skin regeneration. For example, in a
multicenter randomized clinical trial, 150 patients underwent

2088

treatment for burns with NovoSorb Biodegradable Temporiz-
ing Matrix (BTM) (PolyNovo Biomaterials Pty Ltd.).
Novosorb BTM includes a biodegradable PU foam and
nonbiodegradable PU sealing membrane. This study is
expected to be completed by April 2025 (clinicaltrials.gov,
No. NCT04090424). In another multicenter study, 20 patients
with diabetic foot ulcers underwent treatment with a
Carbopol-based hydrogel with erythropoietin (EPO) (treat-
ment group) or standard-of-care (control group).*”” After 12
weeks, a pronounced reduction in the wound was observed,
whereas the wounds in the control group worsened
(clinicaltrials.gov, No. NCT02361931). These clinical reports
clearly indicate the prospective future of biomaterials for
wound healing. The careful consideration of the prevailing
challenges and design of suitable approaches to overcome
them could therefore fill the gap between preclinical and
clinical stages.

5. PATENTS

Due to the significant increase in the number of patients with
chronic wounds worldwide, there is a widespread need to
develop many cost-effective wound healing technologies
employing biomaterials. In this regard, in recent years,
significant investments have been made in R&D evidenced
by marked increases in the number of issued patents. Some of
the patents that have been issued in the recent past specifically
addressing wound healing technologies are summarized in
Table S.

6. FUTURE DIRECTIONS/CONCLUSION

During our life span, almost all humans will encounter wounds
frequently, and in most cases, those wounds do not demand
attention and heal by themselves or with external influence in a
short time. However, certain wounds, such as chronic wounds,
diabetic ulcers, leg ulcers, and severe burns that do not heal on
their own, require special medical care. To manage such
wounds, skin tissue engineering has made significant advances,
wherein biomaterials which closely mimic the native physical
and physical—chemical features of the native skin have been
designed. These biomaterials remove wound exudates, prevent
infections, maintain a moist environment, and deliver oxygen
to the wound site.® Such biomaterials which form wound
dressings include but are not limited to films, hydrogels, foams,
hydrocolloids, and fibers. Polymers form the main component
of these dressings and can be categorized into synthetic and
natural, based on the source of origin.

Most of these dressings are capable of encapsulating
cytokines, growth factors, chemokines, and antimicrobial
agents implicated in wound healing. Among these biomaterials,
hydrogels have been extensively researched and clinically used,
due to their close resemblance with the extracellular matrix. In
addition, by virtue of their hydrating nature, they provide a
moist environment to the wound.**® In the past few years, an
exponential rise in the new strategies based on nanotechnology
has been reported for wound healing with nominal scar
formation.*” The associated nanomaterials could deliver
therapeutic agents, could be used as active therapeutic agents,
or both.

As discussed in the review, several nanomaterials, such as
inorganic, lipid, and polymeric nanoparticles and liposomes,
have been shown to be efficient in preclinical development, yet
silver-based nanomaterials constitute the majority of the

https://doi.org/10.1021/acsabm.2c00035
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Table 4. continued

Ref

Application

Composition

Manufacturer

Product

Type of biomaterial used

Nanotechnology-Based Products

302

Leg and pressure ulcers, diabetic foot ulcers, partial and full-

Ag coated polyethylene net

Smith and Nephew, Inc,,

ACTICOAT?

3S.

thickness wounds, burns (first and second degree), donor and

recipient graft sites
Pressure, leg and diabetic ulcers, partial and full-thickness

USA

460

Collagen with Ag

Medline Industries, Inc.,

Puracol Plus AG*

36.

wounds, burns (first and second degree), donor sites,

traumatic wounds, surface wounds, abrasions

USA

444

Infection-prone wounds, infected wounds

Polymeric membranes with Ag

Ferris Mfg. Corp.

PolyMem Silver Protects

40.

“Abbreviations: PHMB, polyhexamethylene biguanide; HA, hyaluronic acid; Alg, alginate; CMC, carboxylmethylcellulose; AMPS, 2-acrylamido-2 methyl-1-propanesulfonic acid; PEGDMA,

poly(ethylene glycol) dimethacrylate; PVP, polyvinylopyrrolidone; PEG, polyethylene glycol; PEO, poly(ethylene oxide); PVA, poly(vinyl alcohol); PU, polyurethane; Ag, silver; EDTA,

ethylenediaminetetraacetic acid.

2092

(@) Type of Skin Regeneration Clinical Trials

Device

Drug

Biological

Procedure
Other

(b) Skin Regeneration Clinical Trials Across the World
North America

Europe
South America

Asia

Figure 8. (a) Type of clinical trials conducted for skin regeneration/
wound healing and (b) continent where those trials are being carried
out. Data was obtained from clinicaltrials.gov via application program
interface (API) calls written in Python. Subsequently, the data was
cleaned (for example, repetitive trials) using the Pandas package and
the visualization was created using the Matplotlib package. The source
code and visuals are available from the Github repository (https://
github.com/ganeshn2/clinical-trials).

clinically used wound dressings. Nevertheless, the potential of
biomolecules such as nucleic acid and technologies such as
CRISPR-Cas9 could be explored for enhanced wound healing
with improved hair and gland regeneration and reduced scar
formation.”**” Lately, the use of cutting-edge technology 3D
bioprinting has proven to significantly overcome the
fabrication of skin tissues consisting of hair follicles, sweat
glands, and microvessels.'> Furthermore, the association of 3D
bioprinting with another advanced technology, i.e., electro-
spinning, might emerge to be a prospective solution in
fabricating dressings with suitable mechanical properties. The
concept of 4D bioprinting, wherein time could be integrated
with 3D bioprinting, has been exploited to manufacture tissue
constructs which could undergo conformational changes in
response to stimuli.*’>*”"

To date, these properties of 4D constructs have been
especially utilized for addressing the issues of irregular bone
defects. In the upcoming future, these strategies might show a
promising future to enhance wound healing. Altogether, the
advent of newer technologies, along with the augmentation
with existing strategies, might open the door for advancement
in wound healing progress.
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